# Calculating Work Done by an Isothermal Process

• 1.

4 moles of gas undergo an isothermal process at 300 K temperature. Determine the work done by the gas if the volume of the increased by 2 times. (Use R= 8.314 J/K.mol)

• 6815 J

• -6915 J

• 6615 J

• 6715 J

• 2.

During an isothermal process at 290 K temperature, the volume of 2 moles of gas increases to 0.6 L from 0.2 L. Determine the work done by the system. (Use R= 8.314 J/K.mol)

• -5298 J

• 5398 J

• 5198 J

• 5298 J

• 3.

At 300K, two moles of an ideal are isothermally expanded to three times their initial volume. Calculate the amount of work done by the gas. (Use R= 8.314 J/K.mol)

• 5380 J

• -5480 J

• 5680 J

• -5580 J

• 4.

At 300K, two moles of an ideal are isothermally compressed from 30 L to 10 L. Calculate the amount of work done on the gas. (Use R= 8.314 J/K.mol)

• -5480 J

• +5380 J

• +5480 J

• -5380 J

• 5.

If the volume of 10 moles of oxygen at 300 K is expanded from 70 litres to 140 litres in an isothermal expansion, the work done by the gas will be (Use R= 8.314 J/K.mol)

• -15289 J

• -13289 J

• -17289 J

• -16289 J

• 6.

At 273 K, one mole of gas has a volume of 22.4 litres and is compressed isothermally to a volume of 11.2 litres. Calculate the work done on the gas (Use R= 8.314 J/K.mol)

• -1273 J

• +1573 J

• -1573 J

• +1573 J

• 7.

At a constant temperature of 300 K, one mole of an ideal gas expands from an initial volume of 15 litres to a final volume of 35 litres. The work produced by the gas is (Use R= 8.314 J/K.mol)

• -2113 J

• +2213 J

• +2113 J

• -1921 J

• 8.

2 moles of gas has a volume of 20 litres at 321 K and is isothermally compressed to 8 litres. Calculate the amount of work that has been done on the gas. (Use R= 8.314 J/K.mol)

• -4891 J

• -4561 J

• +4561 J

• +4891 J

• 9.

5 moles of air enter a compressor. In the compressor, the air is isothermally compressed from 125 L to 50 L at 400 K. Determine the work done by the compressor on the air. (Use R= 8.314 J/K.mol)

• -15236 J

• -16236 J

• -18236 J

• -17236 J

• 10.

Calculate the amount of work done when 7 moles of an ideal gas isothermally expanded from 40 L to 75 L at 330 K. (Use R= 8.314 J/K.mol)

• -12073 J

• 10073 J

• 11073 J

• -13073 J

• 11.

At 360 K, a 0.5 mole of gas expands isothermally from a volume of 3 L to a volume of 12 L. Determine the work produced by the gas. (Use R= 8.314 J/K.mol)

• +2075 J

• -2075 J

• -1966 J

• +1966 J

• 12.

10 moles of oxygen gas expand isothermally at 300 K from a starting volume of 8 litres to a final volume of 30 litres. Compute the work produced by the gas. (Use R= 8.314 J/K.mol)

• -33967 J

• -31967 J

• -34967 J

• -32967 J

• 13.

4 moles of an ideal gas expands from a starting volume of 5 liters to a final volume of 15 liters at a constant temperature of 350 K. The work that the gas does is (Use R= 8.314 J/K.mol)

• -14787 J

• -12787 J

• 13787 J

• 112787 J

• 14.

During an isothermal compression process, 2.5 moles of air are compressed from 15 L to 3 L at 363 K temperature. Determine the work done by the air. (Use R= 8.314 J/K.mol)

• -11453 J

• +11453 J

• -12143 J

• +12143 J

• 15.

4.0 mole of an ideal gas expands from a starting volume of 10 liters to a final volume of 30 liters at a constant temperature of 380 K. Compute the work done by the gas. (Use R= 8.314 J/K.mol).

• -10834 J

• -12884 J

• -11884 J

• -13883 J

• 16.

The volume of 2 moles of gas increases to 0.6 L from 0.15 L during an isothermal process at 309 K temperature. Determine the work done by the gas. (Use R= 8.314 J/K.mol)

• -7123 J

• -7223 J

• -7283 J

• -7183 J

• 17.

A compressor takes in 3 moles of air. The air is isothermally compressed in the compressor from 34 L to 17 L at 293 K. Determine how much effort the compressor does on the air. (Use R= 8.314 J/K.mol)

• +5066 J

• -6066 J

• +6066 J

• -5066 J

• 18.

Calculate the amount of work done by the compressor on oxygen during the isothermal compression of 1 mol of oxygen from a volume of 25 L to 12.5 L at 350 K temperature. (Use R= 8.314 J/K.mol)

• -1995 J

• +2017 J

• +1995 J

• -2017 J

• 19.

Calculate how much work the compressor does when 2.5 mol of air is compressed isothermally from 10 L to 5 L at 450 K. ( use R= 8.314 J/K.mol.)

• -6583 J

• +6583 J

• +6483 J

• -6483 J

• 20.

2.9 moles of air is expanded from a turbine at 360 K in an isothermal process. If the final volume of the air is twice the initial volume of air, calculate the work produced by the turbine. ( use R= 8.314 J/K.mol.)

• 6816 J

• 6516 J

• 7016 J

• 6016 J

• 21.

At 300 K, 2.9 moles of gas expand from 3.00 to 5.00 L in isothermal expansion. How much work does the gas do? ( use R= 8.314 J/K.mol.)

• -3695 J

• -3795 J

• -3595 J

• -3895 J

• 22.

An ideal gas (n=5 moles) expands isothermally from a state with volume V to a state with volume 4V at 350 K temperature. Determine the work done by the gas. ( use R= 8.314 J/K.mol.)

• -10170 J

• -21170 J

• -20170 J

• -19170 J

• 23.

Determine the work done by the gas (Use R= 8.314 J/K.mol) if the volume of 7.5 moles of oxygen at 400 K is increased from 45 litres to 95 litres in an isothermal expansion.

• -18637 J

• -16637 J

• -19637 J

• -17637 J

• 24.

In an isothermal process, 1.9 moles of air are expanded from a turbine at 340 K. Calculate the work done by the turbine if the end volume of air is thrice the beginning volume of air. ( use R= 8.314 J/K.mol.)

• 5900 J

• 6000 J

• 5700 J

• 5800 J

• 25.

Calculate the amount of work done by the compressor on the air when 2.9 mol of air is compressed isothermally from a volume of 35 L to 5 L at 550 K. (Use R= 8.314 J/K.mol)

• -25804 J

• +25804 J

• -23796 J

• +23796 J

• 26.

A cylinder with a piston contains 0.25 mol of oxygen at 355K. Determine the work required to compress the oxygen from 10 L to 3 L in an isothermal process. (Use R= 8.314 J/K.mol)

• +888 J

• -999 J

• -888 J

• +999 J

• 27.

A monatomic ideal gas (n=3 moles) at 300 K is isothermally compressed from 0.8 L to 0.2 L. Calculate the work done on the gas. (Use R= 8.314 J/K.mol)

• +10373 J

• +9907 J

• -10373 J

• -9907 J

• 28.

Isothermally compressing 4 moles monatomic ideal gas from 0.6 L to 0.2 L at 375 K. Calculate the amount of work that has been done on the gas. ( R= 8.314 J/K.mol.)

• -13701 J

• +13701 J

• +12701 J

• -12701 J

• 29.

Five moles of air are taken in by a compressor. At 313 K, the air in the compressor is isothermally compressed from 30 L to 10 L. Calculate how much work the compressor puts in on the air. (Use R= 8.314 J/K.mol)

• -13295 J

• -14295 J

• +14295 J

• +13295 J

• 30.

In an isothermal process, 0.9 moles of air are expanded at 280 K from a turbine. Calculate the turbine's work output if the end volume of air is twice the beginning volume of air. R= 8.314 J/K.mol.