
You must cCreate an account to continue watching
Register to access this and thousands of other videos
Try Study.com, risk-free
As a member, you'll also get unlimited access to over 88,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.
Get unlimited access to over 88,000 lessons.
Try it risk-freeAlready registered? Log in here for access
BackAlready registered? Log in here for access
How to use {eq}\frac{\mathrm{d^{n}} y}{\mathrm{d} x^{n}} {/eq}to Denote the nth Derivative of y=f(x): Step by Step Overview
Step 1: Understand that the derivative of any function with respect to x is referring to the slope of that function at x.
Recall that the slope formula is $$m=\frac{\Delta y}{\Delta x} $$
Now {eq}\Delta {/eq} as a symbol is generally used to denote "large" changes in a variable. When talking about derivatives though, by definition we are talking about infinitesimally small changes in a variable. This is when we switch to a slightly different notation. Instead of {eq}\Delta {/eq} we simply use a lower-case d. So we make the switch from {eq}\frac{\Delta y}{\Delta x} {/eq} to {eq}\frac{dy}{dx} {/eq}.
The symbol we use to indicate that we are performing the operation of "taking the derivative" is {eq}\frac{\mathrm{d} }{\mathrm{d} x} {/eq}.
So if we have {eq}y=f(x) {/eq}, taking the derivative will look like this:$$\frac{\mathrm{d} }{\mathrm{d} x}y=\frac{\mathrm{d} }{\mathrm{d} x}f(x) $$
Also, the derivatives of a function are often denoted as$$f^{'}(x),f^{''}(x),f^{'''}(x),f^{(4)}(x),f^{(5)}(x),..... $$
So upon taking the derivative of our function, we would write:$$\frac{\mathrm{d} y}{\mathrm{d} x}=f^{'}(x) $$
Step 2: Using the notation from Step 1, continuously take the derivative of your function until you reach the nth derivative.
First Derivative: $$\frac{\mathrm{d} }{\mathrm{d} x}y=\frac{\mathrm{d} }{\mathrm{d} x}f(x)\rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=f^{'}(x) $$
Second Derivative: $$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d} y}{\mathrm{d} x}) = \frac{\mathrm{d} }{\mathrm{d} x}[f^{'}(x)]\rightarrow \frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=f^{''}(x) $$
Third Derivative: $$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}) = \frac{\mathrm{d} }{\mathrm{d} x}[f^{''}(x)]\rightarrow \frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}}=f^{'''}(x) $$
nth Derivative: $$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d^{n-1}} y}{\mathrm{d} x^{n-1}}) = \frac{\mathrm{d} }{\mathrm{d} x}[f^{(n-1)}(x)]\rightarrow \frac{\mathrm{d^{n}} y}{\mathrm{d} x^{n}}=f^{(n)}(x) $$
It is also worth noting a couple of things about this choice of notation:
- It is especially useful when working with Differential Equations as it is easier to manipulate.
- It also tells/reminds us that the derivative is simply a rate of two numbers. More specifically, it is the slope at any particular point.
Using {eq}\frac{\mathrm{d^{n}} y}{\mathrm{d} x^{n}} {/eq} to Denote the nth Derivative of y=f(x): Relevant Rules and Properties of Derivatives
Below are just some of the basic rules for derivatives. We will be using these in the following examples.
Constant Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}c = 0 {/eq}
Constant Multiple Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}cf(x) = c\frac{\mathrm{d} }{\mathrm{d} x}f(x) {/eq}
Power Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}x^{n} = nx^{n-1} {/eq}
Sum and Difference Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}[f(x)\pm g(x)] = \frac{\mathrm{d} }{\mathrm{d} x}f(x)\pm \frac{\mathrm{d} }{\mathrm{d} x}g(x) {/eq}
Product Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}[f(x)g(x)] = f(x)[\frac{\mathrm{d} }{\mathrm{d} x}g(x)]+g(x)[\frac{\mathrm{d} }{\mathrm{d} x}f(x)] {/eq}
Quotient Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}\frac{f(x)}{g(x)} = \frac{g(x)[\frac{\mathrm{d} }{\mathrm{d} x}f(x)]-f(x)[\frac{\mathrm{d} }{\mathrm{d} x}g(x)]}{[g(x)]^{2}} {/eq}
Chain Rule: {eq}\frac{\mathrm{d} }{\mathrm{d} x}f(g(x)) = [\frac{\mathrm{d} }{\mathrm{d} x}f(g(x))]\frac{\mathrm{d} }{\mathrm{d} x}g(x) {/eq}
Also, we will be using the following well-known derivatives of Sine and Cosine:
- {eq}\frac{\mathrm{d} }{\mathrm{d} x}sin(x) = cos(x) {/eq}
- {eq}\frac{\mathrm{d} }{\mathrm{d} x}cos(x) = -sin(x) {/eq}
The following examples demonstrate how to use this notation when given a particular function.
Example 1: Finding the 3rd Derivative of a Polynomial
In this example, let's look at the following polynomial:
$$y=4x^{6}+x^{4}-2x^{2} $$
We're trying to find the 3rd derivative, so we are looking to find {eq}\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}} {/eq}.
Taking the 1st derivative:
$$\frac{\mathrm{d} }{\mathrm{d} x}y=\frac{\mathrm{d} }{\mathrm{d} x}(4x^{6}+x^{4}-2x^{2}) $$
Using the Sum/Difference Rule, we get:$$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}4x^{6}+\frac{\mathrm{d} }{\mathrm{d} x}x^{4}-\frac{\mathrm{d} }{\mathrm{d} x}2x^{2} $$
Then using the Constant Multiple Rule, we can rewrite the function:$$\frac{\mathrm{d} y}{\mathrm{d} x}=4\frac{\mathrm{d} }{\mathrm{d} x}x^{6}+\frac{\mathrm{d} }{\mathrm{d} x}x^{4}-2\frac{\mathrm{d} }{\mathrm{d} x}x^{2} $$
Now using the Power Rule to evaluate the derivative, we get:
$$\frac{\mathrm{d} y}{\mathrm{d} x}=4(6)x^{6-1}+(4)x^{4-1}-2(2)x^{2-1} $$
Simplifying gives us:
$$\frac{\mathrm{d} y}{\mathrm{d} x}=24x^{5}+4x^{3}-4x $$
At this point, we have found the 1st derivative. Now we take the derivative two more times to get to the 3rd derivative.
$$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d} y}{\mathrm{d} x})=\frac{\mathrm{d} }{\mathrm{d} x}(24x^{5}+4x^{3}-4x) $$
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=\frac{\mathrm{d} }{\mathrm{d} x}24x^{5}+\frac{\mathrm{d} }{\mathrm{d} x}4x^{3}-\frac{\mathrm{d} }{\mathrm{d} x}4x $$
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=24\frac{\mathrm{d} }{\mathrm{d} x}x^{5}+4\frac{\mathrm{d} }{\mathrm{d} x}x^{3}-4\frac{\mathrm{d} }{\mathrm{d} x}x $$
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=24(5)x^{5-1}+4(3)x^{3-1}-4(1)x^{1-1} $$
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=96x^{4}+12x^{2}-4 $$
Finally, we find the 3rd.
$$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}})=\frac{\mathrm{d} }{\mathrm{d} x}(96x^{4}+12x^{2}-4) $$
$$\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}}=\frac{\mathrm{d} }{\mathrm{d} x}96x^{4}+\frac{\mathrm{d} }{\mathrm{d} x}12x^{2}-\frac{\mathrm{d} }{\mathrm{d} x}4 $$
In this next step, use the Constant Multiple Rule for the last term.
$$\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}}=96(4)x^{4-1}+12(2)x^{2-1}-0 $$
After simplifying, we have our 3rd derivative:
$$\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}}=384x^{3}+24x $$
Example 2: Finding the 4th Derivative of a Trigonometric Function
Let's take a look at the following function:
$$y=sin(2x) $$
We're trying to find the 4th derivative, so we are looking to find {eq}\frac{\mathrm{d^{4}} y}{\mathrm{d} x^{4}} {/eq}.
Taking the 1st derivative:
$$\frac{\mathrm{d} }{\mathrm{d} x}y=\frac{\mathrm{d} }{\mathrm{d} x}sin(2x) $$
Using the Chain Rule, we get:
$$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}sin(2x)\frac{\mathrm{d} }{\mathrm{d} x}(2x) $$
Using the derivative of Sine:
$$\frac{\mathrm{d} y}{\mathrm{d} x}=2cos(2x) $$
This is the first derivative. Let's continue to take three more derivatives to find the 4th one.
$$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d} y}{\mathrm{d} x})=\frac{\mathrm{d} }{\mathrm{d} x}2cos(2x) $$
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=2\frac{\mathrm{d} }{\mathrm{d} x}cos(2x) $$
Using the derivative of Cosine and the Chain Rule:
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=-2sin(2x)\frac{\mathrm{d} }{\mathrm{d} x}(2x) $$
$$\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}}=-4sin(2x) $$
Continue to take two more derivatives:
$$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d^{2}} y}{\mathrm{d} x^{2}})=\frac{\mathrm{d} }{\mathrm{d} x}(-4sin(2x)) $$
$$\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}}=-4\frac{\mathrm{d} }{\mathrm{d} x}sin(2x)\frac{\mathrm{d} }{\mathrm{d} x}(2x) $$
$$\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}}=-8cos(2x) $$
Now for the last derivative:
$$\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\mathrm{d^{3}} y}{\mathrm{d} x^{3}})=\frac{\mathrm{d} }{\mathrm{d} x}(-8cos(2x)) $$
$$\frac{\mathrm{d^{4}} y}{\mathrm{d} x^{4}}=-8\frac{\mathrm{d} }{\mathrm{d} x}cos(2x)\frac{\mathrm{d} }{\mathrm{d} x}(2x) $$
$$\frac{\mathrm{d^{4}} y}{\mathrm{d} x^{4}}=16sin(2x) $$
So the fourth Derivative of {eq}y=sin(2x) {/eq} is {eq}\frac{\mathrm{d^{4}} y}{\mathrm{d} x^{4}}=16sin(2x) {/eq}.