Back To Course

High School Algebra II: Help and Review26 chapters | 296 lessons

Are you a student or a teacher?

Try Study.com, risk-free

As a member, you'll also get unlimited access to over 75,000 lessons in math, English, science, history, and more. Plus, get practice tests, quizzes, and personalized coaching to help you succeed.

Try it risk-freeWhat teachers are saying about Study.com

Already registered? Login here for access

Your next lesson will play in
10 seconds

Lesson Transcript

Instructor:
*Yuanxin (Amy) Yang Alcocer*

Amy has a master's degree in secondary education and has taught math at a public charter high school.

Vertical asymptotes are interesting mathematical phenomena that occur with certain functions. You will learn where you will see them, what they look like, and how to find them in this lesson.

**Vertical asymptotes** are invisible vertical lines that certain functions approach, yet do not cross, when the function is graphed. When you graph some mathematical functions, you will see that the resultant curve avoids certain invisible lines in the graph. No matter what, you can't get the graph to cross those lines. Let me show you what it looks like.

The dashed lines have been drawn in to show you where the vertical asymptotes are. Do you see how the graph avoids those areas?

There are some rules that vertical asymptotes follow.

- The graph tends to either positive or negative infinity as it gets closer to the vertical asymptote. Look at the graph and notice how the curve goes either all the way up or all the way down as it nears the asymptote.
- The distance between the asymptote and the graph tends to zero as the graph gets closer to the asymptote. The graph and the asymptote will seem to almost merge together at the tips, but the curve will never actually touch the asymptote. It is as if the vertical asymptote had a protective field around it preventing anything from touching or crossing it.
- The graph can approach the vertical asymptote from either direction, from either the right or the left. Look at the graph and see how the graph approaches from both directions. Some functions only approach from only one direction, but like our function, others can approach from both.

The function that we graphed is somewhat complex and is called a **rational function**. In this lesson, we will focus on the vertical asymptotes of rational functions. There are other functions that also produce vertical asymptotes, but rational functions are the most common.

A rational function is a function whose numerator and denominator are made up of polynomials. The general form of a rational function is the following.

Here are some examples of rational functions.

All of the above are fractions where both the numerator and denominator are polynomials. Because of this, this type of function makes it easy for you to find the vertical asymptotes.

To determine the vertical asymptotes of a rational function, all you need to do is to set the denominator equal to zero and solve. Vertical asymptotes occur where the denominator is zero. Remember, division by zero is a no-no. Because you can't have division by zero, the resultant graph thus avoids those areas.

Let's go back to our first function and see if we can find the vertical asymptotes.

To find the vertical asymptotes, you need to set the denominator equal to zero and solve. Let's see what we get when we do that. We would use factoring to solve.

We have found that our zeroes for our denominator are -3 and -7. Now, look at the graph to see if that is where my vertical asymptotes are. Yep, looks like it. The graph avoids the lines at x=-3 and x=-7.

There is one circumstance where a zero in the denominator does not produce a vertical asymptote. This is when you have the same zero in the numerator. So, what this means is that you would want to solve both the numerator and denominator for zero. If they have an answer in common, then that number is not a vertical asymptote. Let's see what that looks like. The following function has already been factored, so you can easily see your zeroes.

Looking at this function, we see that the vertical asymptotes are -3, -1, and -2 from solving the denominator for zero. But, solving the numerator for zero, we see that the numerator has zeroes of -3 and 4. They both have a -3, so that means the vertical asymptote at -3 is canceled by the -3 zero in the numerator. So, my actual asymptotes are only x=-1 and x=-2.

To recap, a **vertical asymptote** is an invisible line which the graph never touches. The graph will approach this line, but it won't dare touch or cross it. The graph can approach this asymptote from either direction - or both. To find the asymptote of rational functions, you solve the denominator for zero. All the zeroes of the denominator are vertical asymptotes, except in the case where the same zero occurs in the numerator.

To unlock this lesson you must be a Study.com Member.

Create your account

Are you a student or a teacher?

Already a member? Log In

BackWhat teachers are saying about Study.com

Already registered? Login here for access

Did you know… We have over 160 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.

To learn more, visit our Earning Credit Page

Not sure what college you want to attend yet? Study.com has thousands of articles about every imaginable degree, area of study and career path that can help you find the school that's right for you.

You are viewing lesson
Lesson
14 in chapter 16 of the course:

Back To Course

High School Algebra II: Help and Review26 chapters | 296 lessons

- Graphing Basic Functions 8:01
- Compounding Functions and Graphing Functions of Functions 7:47
- Understanding and Graphing the Inverse Function 7:31
- Polynomial Functions: Properties and Factoring 7:45
- Polynomial Functions: Exponentials and Simplifying 7:45
- Exponentials, Logarithms & the Natural Log 8:36
- Slopes and Tangents on a Graph 10:05
- Equation of a Line Using Point-Slope Formula 9:27
- Horizontal and Vertical Asymptotes 7:47
- Implicit Functions 4:30
- Graphs: Types, Examples & Functions 5:06
- Congruent in Math: Definition & Examples 3:10
- Finding Absolute Extrema: Practice Problems & Overview
- Vertical Asymptotes: Definition & Rules 4:29
- Go to Algebra II - Graphing and Functions: Help and Review

- Computer Science 335: Mobile Forensics
- Electricity, Physics & Engineering Lesson Plans
- Teaching Economics Lesson Plans
- U.S. Politics & Civics Lesson Plans
- US History - Civil War: Lesson Plans & Resources
- HESI Admission Assessment Exam: Factors & Multiples
- HESI Admission Assessment Exam: Probability, Ratios & Proportions
- HESI Admission Assessment Exam: 3D Shapes
- HESI Admission Assessment Exam: Punctuation
- HESI Admission Assessment Exam: Linear Equations, Inequalities & Functions
- CPCE Prep Product Comparison
- CCXP Prep Product Comparison
- CNE Prep Product Comparison
- IAAP CAP Prep Product Comparison
- TACHS Prep Product Comparison
- Top 50 Blended Learning High Schools
- EPPP Prep Product Comparison

- History of Sparta
- Realistic vs Optimistic Thinking
- How Language Reflects Culture & Affects Meaning
- Logical Thinking & Reasoning Questions: Lesson for Kids
- Middle School Choir Activities
- Holocaust Teaching Activities
- Shades of Meaning Activities
- Quiz & Worksheet - Dolphin Mating & Reproduction
- Octopus Diet: Quiz & Worksheet for Kids
- Quiz & Worksheet - Frontalis Muscle
- Quiz & Worksheet - Fezziwig in A Christmas Carol
- Flashcards - Measurement & Experimental Design
- Flashcards - Stars & Celestial Bodies
- Social and Emotional Learning | Self-Management
- Lesson Plan Templates

- To Kill a Mockingbird Study Guide
- Emotional Intelligence: Help & Review
- ScienceFusion Intro to Science & Technology: Online Textbook Help
- Art 101: Art of the Western World
- Ohio Assessments for Educators - Biology (007): Practice & Study Guide
- ScienceFusion Matter and Energy Unit 2.2: Temperature
- HSPT Test: Understanding Fractions
- Quiz & Worksheet - Theories of Gender
- Quiz & Worksheet - Influence of Ancient Roman Culture
- Quiz & Worksheet - Elements of Adult Development
- Quiz & Worksheet - Tax Incidence
- Quiz & Worksheet - Practice Problems for Vector Resolution

- Geography & Early Settlement of China
- Expanded Form Lesson Plan
- Homeschooling in Georgia
- The New SAT Essay Section
- Online Credit Recovery Programs
- GRE or GMAT for an MBA?
- USMLE Step 2 CS Scheduling
- How to Ace Your Job Interview
- Cool Science Facts
- Electrolysis of Water Experiment for Kids
- Average LSAT Score
- Aerospace Engineering Scholarships for High School

- Tech and Engineering - Videos
- Tech and Engineering - Quizzes
- Tech and Engineering - Questions & Answers

Browse by subject